Rechnerstrukturen

Vorlesung im Sommersemester 2007

Prof. Dr. Wolfgang Karl

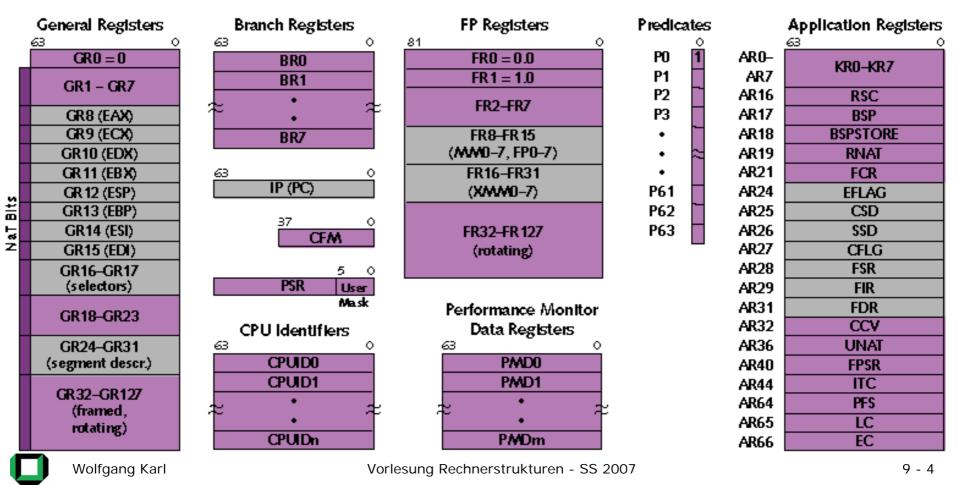
Universität Karlsruhe (TH)

Fakultät für Informatik

Institut für Technische Informatik

Vorlesung Rechnerstrukturen

 Kapitel 2: Parallelismus auf Befehlsebene

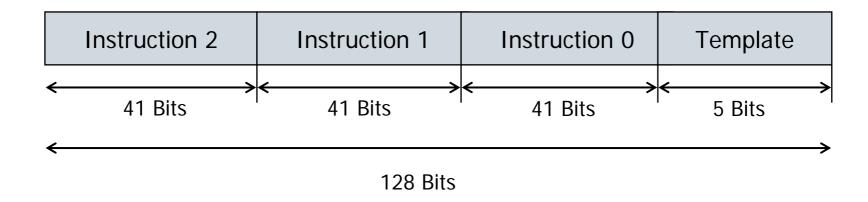

2.3: Nebenläufigkeit, VLIW, EPIC

- EPIC: Explicitly Parallel Instruction Computing
 - Gemeinsames Projekt von Hewlett-Packard und Intel (1994 angekündigt)
 - Ziele:
 - 64 Bit Architektur: IA-64
 - Explizite Spezifikation des Parallelismus im Maschinencode: EPIC-Format, (entspricht VLIW-Prinzip)
 - Bedingte Ausführung von Befehlen (Predication)
 - Spekulative Ausführung von Ladeoperationen (Data Speculation)
 - Großer Registersatz
 - Skalierbarer Befehlssatz
 - Sinnvolles Zusammenwirken zwischen Compiler und Hardware
 - Itanium: erster Prozessor der P7-Generation (Code-Name Merced)

• Intel IA-64

Registersatz

Quelle: Microprocessor Report, Vol.13, Nr.7, 1999

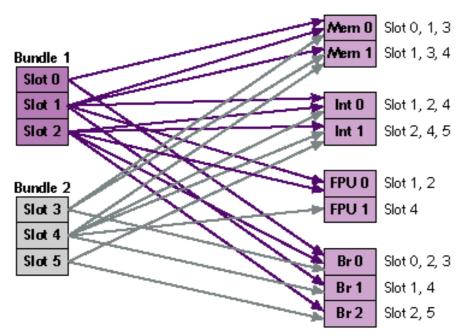

IA-64 ISA: Befehlsformat

- Opcode
- Predicate
- 2 Felder für Quelloperandenregister
- 1 Feld für Zielregister

IA-64 ISA

 – IA-64 Instruktionen werden vom Compiler in so genannte Bundles gepackt

IA-64 ISA


- Bundles:

- Template: zeigt explizit an, ob
 - die Instruktionen im Bundle gleichzeitig ausgeführt werden dürfen, oder
 - eine oder mehrere Instruktionen sequentiell auszuführen sind, oder
 - benachbarte Bundles parallel ausgeführt werden können.

Beispiele von Befehlsgruppen:

```
.mii
      add r1 = r2,r3
      sub r4 = r4, r5;;
      shr r7 = r4, r12;;
                                         Gruppe
  .mmi
      1d8 r2 = [r1];;
      st8 [r1] = r23
      tbit p1,p2 = r4,5
  .mbb
      1d8 r45 = [r55]
      br.call b1 =func1
(p3)
      br.cond Label1
(p4)
  .mfi
      st4 [r45] = r6
      fmac f1 = f2,f3
      add r3 = r3,8;;
```

- Anstoßen der Befehle zur Ausführung
 - Beispiel: Itanium

 Es können bis zu sechs Instruktionen pro Takt zur Ausführung angestoßen werden. Die Instruktionen kommen von zwei Bundles. Jeder Bundle hat 3 Slots.

IA-64: Skalierbarkeit

- Jedes Bundle enthält drei Instruktionen für eine Menge von drei Funktionseinheiten.
- Ein IA-64 Prozessor kann n Mengen von jeweils drei Funktionseinheiten haben, welche die Informationen im Template nutzen, dann können mehrere Bundles in ein Instruktionswort mit der Länge n Bundles gepackt werden.
 - → Skalierbarkeit bezüglich der Anzahl der Funktionseinheiten

- Predication, bedingte Befehlsausführung
 - Beispiel:

Bedingte Befehlsfolge

- Evaluierung der bedingten Ausdrücke mit Hilfe von Compare-Operationen.
- Jeder Befehl hat ein 6 Bit breites Predicate Feld zur Angabe des Predicate-Registers
- Elimination von Sprüngen

Predication (Bedingte Befehlsausführung)

- Zur Laufzeit werden die voneinander unabhängigen Befehle zur Ausführung angestoßen.
- Der Prozessor führt die Befehle auf den möglichen Programmverzweigungen aus, aber speichert die Ergebnisse nicht endgültig.
- Überprüfen der Predicate Register
 - Falls das Register eine 1 enthält, dann ist wird die Ausführung der Instruktion abgeschlossen.
 - Falls das Register eine 0 enthält, dann wird das Ergebnis verworfen.

IA-64 Control Speculation

 Problem: Verzweigungen schränken Code-Verschiebungen ein

Ladeoperation kann nicht über den Sprung verschoben werden, denn es könnten Alarme ausgelöst werden.

IA-64 Control Speculation

 Lösung: Spekulative Operationen, die keine Alarme auslösen

```
instA
instB
...
br Grenze

ld8 r1 =[r2]
use r1
```

```
Spekulative Ladeoperation

ld8.s r1 =[r2]

use r1

instA

instB

...

br

Chk.s Speculation Check
```

IA-64 Control Speculation

- Einführung von spekulativen Ladeoperationen
 - Verursachen keinen Alarm:
 - Falls zur Laufzeit die Operation einen Alarm auslöst, dann wird dieser Alarm verzögert
 - Setzen von NaT-Bit (Deferred Exception Token, Not-a-Thing Bit) in Zielregister
 - Spekulative Ladeoperation kann über Verzweigungen hinweg verschoben werden
 - Einfügen von Speculation Check Instruktion (chk.s) anstelle der Ladeoperation
 - Zur Laufzeit überprüft die Check-Operation das Zielregister, ob NaT gesetzt ist. Wenn ja, dann erfolgt eine Verzweigung zu einem speziellen Fix-up-Code.

 Problem: Zeiger können Compiler zu konservativen Annahmen über die Referenzen zwingen, was eine Code-Verschiebung verhindert.

```
instA
instB
...
store
```

Ladeoperation kann nicht über den die Speicheroperation verschoben werden, da beide dieselbe Adresse referenzieren können.

Lösung: Vorgezogene Ladeoperationen

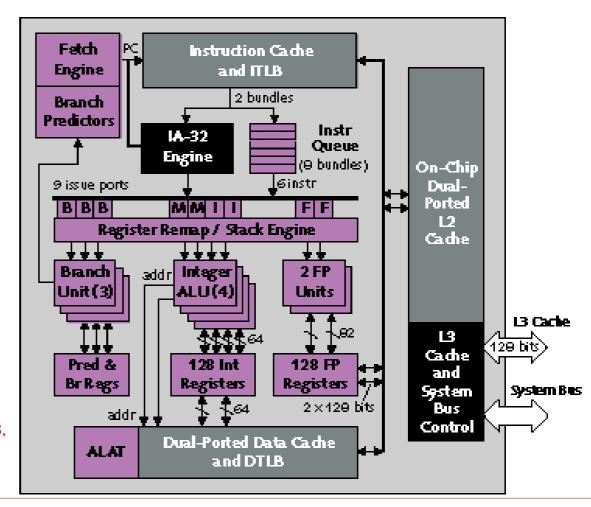
```
instA
instB
...
store
```

```
ld8 r1 =[r2]
use r1
```

Vorgezogene Ladeoperation

```
ld8.a r1 =[r2]
use r1
instA
instB
...
store
```

chk.a


Speculation Check

- Lösung: Vorgezogene Ladeoperationen
 - Verschieben von Lade-Operationen auch vor Speicher-Operationen.
 - Vorgezogene Lade-Operation (ld.a)
 - Zur Laufzeit werden Informationen (Zielregister, Speicheradresse, auf die zugegriffen wird, Zugriffsgröße) in Advanced Load Address Table (ALAT) festgehalten.
 - Zur Laufzeit prüft die Hardware, wenn eine Speicheroperation ausgeführt wird, ob eine Adresse in der ALAT mit der Zugriffsadresse übereinstimmt. Wenn ja, dann wird der Eintrag in ALAT gelöscht

- Lösung: Vorgezogene Ladeoperationen
 - Einfügen der Check-Operation (chk.a)
 - Prüft, ob Eintrag von der entsprechenden vorgezogenen Ladeoperation in ALAT steht.
 - Wenn nicht, dann hat es eine Kollission mit einer Speicheroperation gegeben und es erfolgt eine Verzweigung zu einem Fix-up-Code.

Intel Itanium

Quelle: Microprocessor Report, Vol.13, Nr.13, October 5, 1999

Intel Itanium

- 64-Bit Prozessor der P7 Generation
- EPIC
- 10-stufige Pipeline mit 6 Befehlen, die gleichzeitig zur Ausführung angestoßen werden können.
- 128 GP- und 128 FP-Register keine
 Registerumbenennung: rotierende Registerfenster
- Bedingte Befehlsausführung: 64 1 Bit Predicate Register
- 9 Funktionseinheiten
- Misprediction Penalty: 9 Zyklen

Intel Itanium

- Spekulative Ladeopationen
- 4-fach mengenassoziative L1 Befehls- und Daten-Cache-Speicher (Write-through)
- 6-fach mengenassoziativer L2 Cache (Copy-back)
- Informationen
 - Intel: http://www.intel.com/
 - Intel Technology Journal: http://developer.intel.com/technology/itj
 - IEEE Micro: Sonderheft im Spe./Okt. 2000
 - Henn./Patt.: Computer Architecture: Kap. 4.7

• Literatur:

- Brinkschulte/Ungerer: Mikrocontroller und Mikroprozessoren. Springer-Verlag, 2002: Kap. 6.1-6.4, Kap. 7
- Hennessy/Patterson: Computer ArchitectureA Quantative Approach. 3. Auflage: Kap.

Vorlesung Rechnerstrukturen

 Kapitel 2: Parallelismus auf Befehlsebene

2.4: Thread-Level Parallelismus, Multithreading

- Grundsätzliche Aufgabe beim Prozessorentwurf:
 - Reduzierung der Untätigkeits- oder Latenzzeiten
 - Entstehen bei Speicherzugriffen, insbesondere bei Cache-Fehlzugriffen
 - Bei speichergekoppelten Multiprozessoren, wenn auf nicht-lokalen Speicher zugegriffen wird
 - Synchronisation von parallelen Kontrollfäden (Threads)
 - Lösung: parallele Ausführung mehrerer
 Kontrollfäden

- Mehrfädige Prozessortechnik
 - Gegeben mehrere ausführbereite Kontrollfäden, Threads
 - Ziel: Parallele Ausführung mehrerer Kontrollfäden
 - Voraussetzung:
 - Mehrere Kontrollfäden sind geladen
 - Kontext muss für jeden Thread gesichert werden können
 - Mehrere getrennte Registersätze auf Prozessorchip
 - Mehrere Befehlszähler
 - Getrennte Seitentabellen
 - Threadwechsel, wenn gewartet werden muss

- Mehrfädige Prozessortechnik
 - Cycle-by-cycle Interleaving (feingranulares Multithreading)
 - Eine Anzahl von Kontrollfäden ist geladen.
 - Der Prozessor wählt in jedem Takt einen der ausführungsbereiten Kontrollfäden aus.
 - Der nächste Befehle in der Befehlsreihenfolge des ausgewählten Kontrollfadens wird zur Ausführung ausgewählt.
 - Beispiele
 - Multiprozessorsysteme HEP, Tera
 - Nachteil:
 - Die Verarbeitung eines Threads kann erheblich verlangsamt werden, wenn er ohne Wartezeiten ausgeführt werden kann

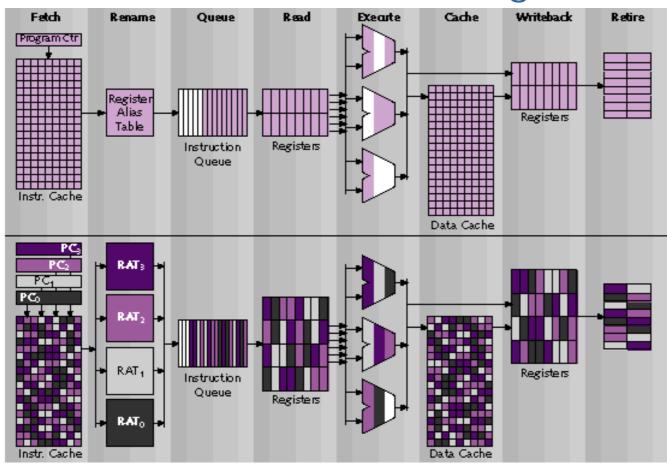
Mehrfädige Prozessortechnik

- Block Interleaving

 Befehle eines Kontrollfadens werden so lange ausgeführt, bis eine Instruktion mit einer langen Latenzzeit ausgeführt wird. Dann wird zu einem anderen ausführbaren Kontrollfaden gewechselt.

• Vorteil:

 Die Bearbeitung eines Threads wird nicht verlangsamt, da beim Warten ausführungsbereiter Thread gestartet wird


Nachteil:

- Bei Thread-Wechsel Leeren und Neustarten der Pipeline,
- Nur bei langen Wartezeiten sinnvoll

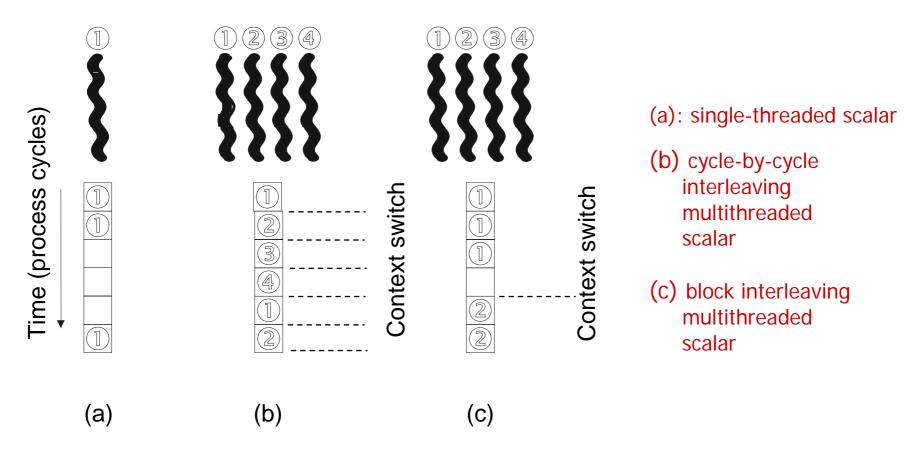
Mehrfädige Prozessortechnik

- Simultaneous Multithreading
 - Mehrfach superskalarer Prozessor
 - Die Ausführungseinheiten werden über eine Zuordnungseinheit aus mehreren Befehlspuffern versorgt.
 - Jeder Befehlspuffer stellt einen anderen Befehlsstrom dar.
 - Jedem Befehlsstrom ist eigener Registersatz zugeordnet.

- Mehrfädige Prozessortechnik
 - Simultaneous Multithreading

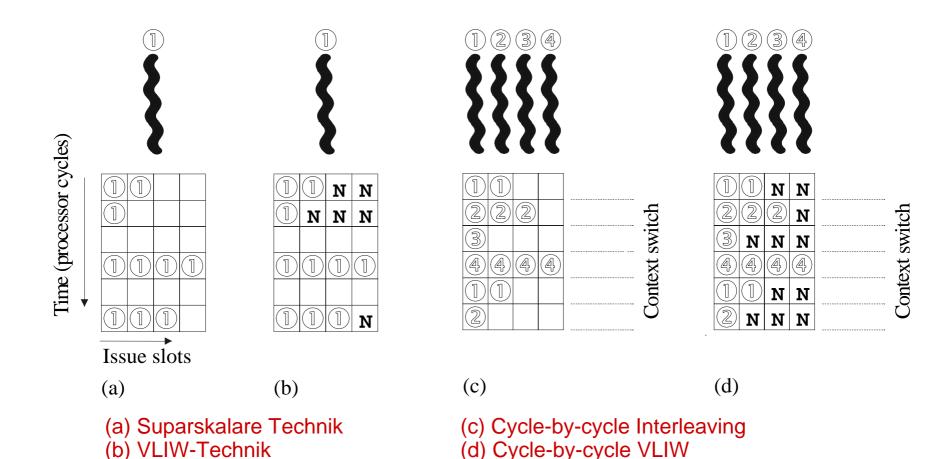
- Mehrfädige Prozessortechnik
 - Simultaneous Multithreading: Diskussion
 - Abwägen zwischen Geschwindigkeit eines Threads und dem Durchsatz vieler Threads
 - Ein bevorzugter Thread
 - » Allerdings kann dies auf Kosten des Durchsatzes gehen, da Befehle anderer Threads möglicherweise nicht bereit stehen
 - Mischen vieler Threads:
 - » Geht möglicherweise zu Lasten der Leistung der einzelnen Threads

- Mehrfädige Prozessortechnik
 - Simultaneous Multithreading: Beispiele
 - Compaq Alpha 21464 (EV8), ursprünglich angekündigt für 2002/2003, Entwicklung aber eingestellt! Entwicklergruppe jetzt bei Intel
 - Intel P4: Hyperthreading
 - Sun Ultra SPARC IV: Chip Multithreading

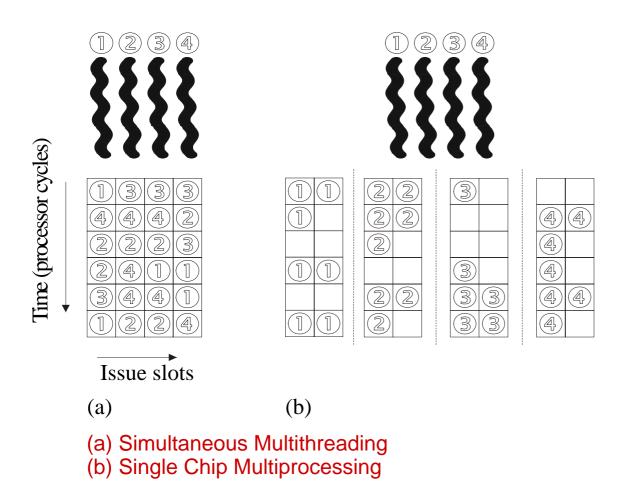

Multithreading

Literatur:

Brinkschulte, U.; Ungerer, T.:
 Microcontroller und Mikroprozessoren.
 Springer, Heidelberg, 2002: Kap.: 10.4.3


Zusammenfassung

Vergleich von Prozessortechniken


(siehe Brinkschulte, Ungerer: Mikrocontroller und Mikroprozessoren: Kap. 10.4.3)

Vergleich von Prozessortechniken

Vergleich von Prozessortechniken

Zusammenfassung

- Architektur und Mikroarchitektur von Prozessoren
 - Architektur
 - -RISC-Prinzip: Pipelining
 - Superskalare Prozessortechnik
 - -VLIW/EPIC
 - Multithreading
 - Vergleich

Vorlesung Rechnerstrukturen

 Kapitel 3: Multiprozessoren – Parallelismus auf Prozess/Thread-Ebene

3.1: Motivation

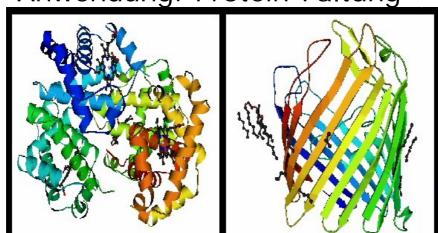
Überblick

- Allgemeine Grundlagen, parallele
 Programmierung, Verbindungsstrukturen,
 Leistungsfähigkeit
- Speichergekoppelte Multiprozessoren: SMP und DSM, Cache-Kohärenz und Speicherkonsistenz, Rechnerbeispiele
- Nachrichtengekoppelte Multiprozessoren,
 Beispielrechner

- Einordnung:
 - Klassifikation nach Flynn: MIMD-Rechner
- Warum Multiprozessorsysteme?
 - Hohe Anforderungen von Anwendungen an die Rechenleistung
 - Technisch-wissenschaftlicher Bereich
 - Rechnergestützte Simulation
 - Kommerzieller Bereich
 - Server, Datenbank-Anwendungen, WEB

Motivation

- Hohe Anforderungen von Anwendungen an die Rechenleistung
 - Beispiel technisch-wissenschaftlicher Bereich
 - C Rechnergestützte Simulation
 - Strömungsmechanik
 - Modellierung der globalen klimatischen Veränderungen
 - Evolution von Galaxien
 - Struktur von Materialien
 - **—**
 - →Anforderung an die Rechenleistung: Bereich Tera-, bzw. Petaflop


"Grand Challenges"

- Hohe Anforderungen von Anwendungen an die Rechenleistung
- Höchstleistungsrechner:
 - TOP500-Liste
 - Führt die schnellsten Rechner der Welt auf
 - Erscheint immer im Juni und im November eines Jahres
 - http://www.top500.org
 - » Beispiel: TOP500 Liste (November 2005)

Motivation

- Höchstleistungsrechner:
 - TOP500-Liste
 - Nr.1: BlueGene/L, Modell: eServer Blue Gene Solution
 - Standort: DOE/NNSA/LLNL
 - Anzahl Prozessoren: 132072 (!)
 - Leistung: 280600 GFLOPS (Linpack)

– Anwendung: Protein-Faltung

Quelle: IBM Research;

http://www.research.ibm.com/bluegene/sciapp.html

Motivation

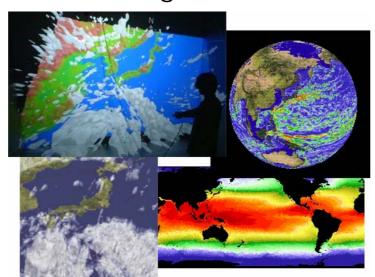
- Höchstleistungsrechner:
 - BlueGene/L DD2 beta-System (0.7 GHz PowerPC 440)
 - Bilder der Fertigung:

Quelle: IBM Research;

http://domino.research.ibm.com/comm/pr.nsf/pages/rsc.bluegene_2004.html

Motivation

- Höchstleistungsrechner:
 - BlueGene/L DD2 beta-System (0.7 GHz PowerPC 440)
 - Fertiges System:

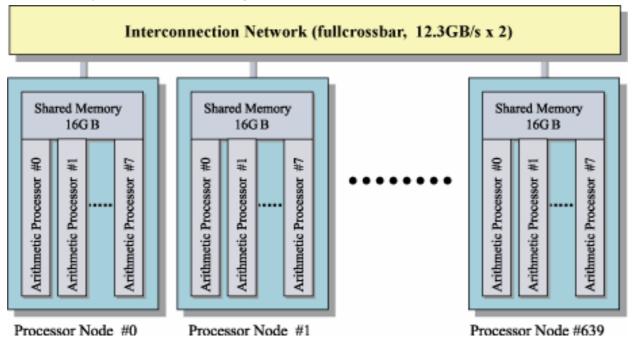

Quelle: IBM Research;

http://domino.research.ibm.com/comm/pr.nsf/pages/rsc.bluegene_2004.html

Motivation

- Höchstleistungsrechner:
 - Earth Simulator (Japan, Platz 7 (TOP500, Nov. 05)
 - Anzahl Prozessoren: 5120
 - Leistung: 35,86 TFLOPS (Linpack),
 - Anwendung: Klimaforschung

Quelle: The Earth Simulator Center;

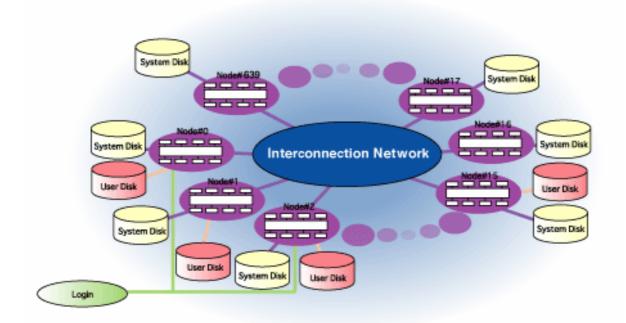

- Höchstleistungsrechner:
 - Earth Simulator (Japan, Platz 7 (TOP500, Nov. 05)
 - Ziel des Earth Simulator Project:
 - » "The Earth Simulator Project will create a "virtual earth" on a supercomputer to show what the world will look like in the future by means of advanced numerical simulation technology."
 - » "Achievement of high-speed numerical simulations with processing speed of 1000 times higher than that of the most frequently used supercomputers in 1996."

- Höchstleistungsrechner:
 - Earth Simulator (Japan, Platz 7 (TOP500, Nov. 05)
 - "Understanding and Prediction of Global Climate Change
 - » Occurrence prediction of meteorological disaster
 - » Occurrence prediction of El Niño
 - » Understanding of effect of global warming
 - » Establishment of simulation technology with 1km resolution"

- Höchstleistungsrechner:
 - Earth Simulator (Japan, Platz 7 (TOP500, Nov. 05)
 - "Understanding of Plate Techtonics
 - » Understanding of long-range crustal movements
 - » Understanding of mechanism of seismicity
 - » Understanding of migration of underground water and materials transfer in strata"

Motivation

- Höchstleistungsrechner:
 - Earth Simulator (Japan)
 - Systemkonfiguration



Quelle: The Earth Simulator Center; http://www.es.jamstec.go.jp/esc/eng/Hardware/system.html

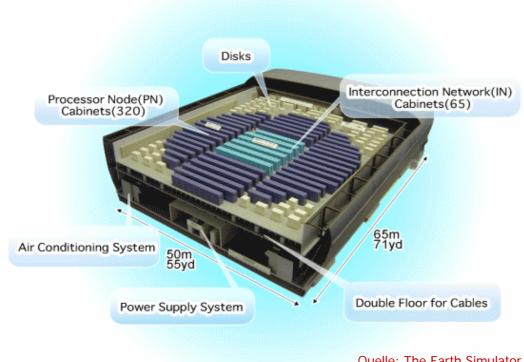
Motivation

- Höchstleistungsrechner:
 - Earth Simulator (Japan)



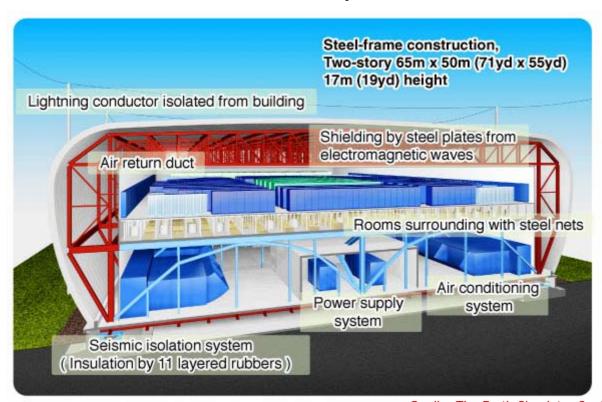
Quelle: The Earth Simulator Center;

http://www.es.jamstec.go.jp/esc/research/Perception/index.en.html


- Höchstleistungsrechner:
 - Earth Simulator (Japan)

Motivation

- Höchstleistungsrechner:
 - Earth Simulator (Japan)



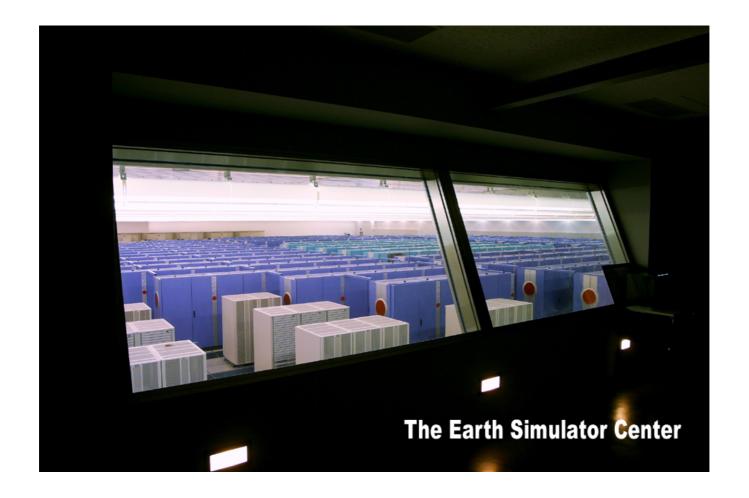
Quelle: The Earth Simulator Center;

http://www.es.jamstec.go.jp/esc/research/Perception/index.en.html

Motivation

- Höchstleistungsrechner:
 - Earth Simulator (Japan)

Quelle: The Earth Simulator Center; http://www.es.jamstec.go.jp/esc/research/Perception/index.en.html


Earth Simulator

Quelle: The Earth Simulator Center; http://www.es.jamstec.go.jp/esc/eng/GC/index.html

Earth Simulator

- Earth Simulator
 - Erdbebenschutz:

Quelle: The Earth Simulator Center; http://www.es.jamstec.go.jp/esc/research/Perception/index.en.html